
Michael Montgomery
Austin Product Center

Schlumberger
Austin, TX 78726

mmontgomery@slb.com

Secure Object Sharing in Java Card

Ksheerabdhi Krishna
Austin Product Center

Schlumberger
Austin, TX 78726

kkrishna@slb.com
Abstract

Since the invention of the Java Card, the issue of code
and data sharing has been a topic of great interest. Early
Java Cards shared data via files secured with access
control lists. Java Card 2.1 specification introduced a
method of object sharing, allowing access to methods of
server applets using Shareable Interface Objects (SIO).
However, this SIO approach can be improved. It permits
access to all interfaces of the SIO, whereas some inter-
faces may be intended only for particular clients. AID
impersonation could be used to gain access to services
unless the card authenticates all applets. Access to a
SIO by future applets may be impossible. Passing object
data between applets is quite cumbersome.
An approach to object sharing based on delegates is de-
scribed, which provides needed improvements with min-
imal modifications to Java Card 2.1. Using the delegate
approach, only the desired methods of an applet are ex-
posed, and each method can be protected by any security
policy the applet wishes to implement. A shared secret
security policy is described, using challenge/response
phrases to avoid revealing the shared secret. Such a se-
curity policy does not require applet authentication to
avoid AID impersonation, and lends itself readily to ac-
cess by any future applets that may be written.

1 Introduction

Since the invention of the Java Card, the issue of
code and data sharing has been a topic of considerable
interest. The first Java Cards [2] shared data between
Java Card applets using a file system secured by access
control lists. These lists determined which identities
could access particular files, and what permission each
identity was granted with respect to each file. The iden-
tities were established using key files and PIN verifica-
tion. This solution was quite powerful for many com-
mon data sharing situations; however it did not lend it-
self well to situations requiring access to methods
belonging to another Java Card applet.

Figure 1: Basic Java Card Architecture

A typical Java Card architecture is shown in Figure
1. The card contains an operating system, Java Card Vir-
tual Machine [7], Java Card Runtime Environment
(JCRE), and the Java Card API in ROM. Applications
are Java packages programmed to the API, and are usu-
ally loaded into EEPROM. An application consists of
one or more applets; applets in different packages are
separated by a firewall to prevent access to applet data
across package boundaries. Applets are programmed
using a subset of Java, and have a specified set of entry
points that trigger various actions on the card [6].

In this paper, we will describe the object sharing
mechanism introduced in Java Card 2.1, examine the is-
sues associated with this mechanism, and propose alter-
natives that address these issues. We rely heavily on
code examples, key elements of which are inserted into
the paper at relevant points. Sometimes the code in the
paper is edited for brevity, and comments containing
“...” indicates the removal of code not pertinent to the
discussion. The complete Java source code for these ex-
amples can be found in http://www.cyberflex.slb.com/
usenixMK99.html. Note that when discussing the dele-
gate examples, this code uses a framework which is suit-
able for simulation on a workstation, and is not intended
for use on a Java card.

P

AD
AD

JCRE (Java Card JCVM

OS

Runtime Env.)

P

AD

P

AD
AD

Java Package

Applet Data

Firewall

+ JCAPI

2 Object Sharing In Java Card 2.1

The Java Card 2.1 specification [10] introduces a
means of sharing objects between Java Card applets. Al-
though somewhat more difficult to use than file sharing,
it does provide a means for accessing object methods,
rather than just data. This specification uses a unique ap-
plet identifier (AID) [4] as the basis for determining
which applets are granted access to objects created by
other applets.

2.1 Description Of Object Sharing Mechanism

The strict firewall enforcement of Java Card 2.1
completely prevents an applet from accessing data cor-
responding to another applet. However, a provision was
made for an applet to obtain an interface belonging to
another applet, and to invoke a method on this interface.
This forms the basis of the Java Card 2.1 object sharing
mechanism.

2.1.1 Restricting Method Access through a SIO

Normally in Java [1], it would be possible to access
public methods across packages. Therefore, one could
use public methods in other packages without a need for
a sharing mechanism.

But this poses a problem for Java card, because the
applet entry points are necessarily public, yet we must
restrict access to them to prevent applets from running
other applet methods without permission. So the JCRE

does not permit any method to be invoked in other ap-
plets, except through the SIO mechanism. This prevents
obvious hacks, such as casting an object reference to
gain access to all of the public object methods, bypass-
ing the restriction of the interface.

2.1.2 Applet Context

The object system in a Java Card is partitioned into
separate protected object spaces referred to as contexts.
All applets in a given package share the same context,
and are prohibited from accessing objects in a different
context due to firewalls which are enforced by the Java
Card Runtime Environment (JCRE) [8]. The JCRE is
able to access objects in any context, and global arrays
such as the APDU buffer (which are owned by the
JCRE) can be accessed by applets in any context.

2.1.3 Shareable Interface Objects (SIO)

Shareable interfaces are a new feature in the Java
Card 2.1 API [9] to enable applets to explicitly share ob-
jects by defining a set of shared interface methods. Such
shareable objects are called Shareable Interface Objects
(SIO). We can think of those applets which provide SIO
as server applets (since they will provide access to their
services via the SIO), and those applets which use the
SIO of another applet as client applets. Note that an ap-
plet may be a server to some applets, and yet a client of
other applets.

Server
Applet

Client
Applet

Server
Appletregister()JCRE

Server
Applet

Client
Applet

JCSystem.getAppletShareableInterfaceObject(ServerAID,byte) getShareableInterfaceObject(ClientAID,byte)

SIO (or null)SIO (or null) JCRE

Step 1: Server registers itself

Step 2: Client obtains access to server SIO through JCRE

Step 3: Client has ‘transparent’ access only to the server SIO

access only SIO methods

1 2

34

Figure 2: Creating and accessing a SIO

B A

2.1.4 Creating a SIO

In order to create a new SIO, a server applet A must
first define a shareable interface X, which extends the
interface javacard.framework.Shareable. Applet A then
defines a class C that implements the shareable interface
X, and creates an instance O of class C. Object O is now
a SIO. An instance of applet A with an AID is registered
with the JCRE, as shown in Figure 2, step 1; this AID is
subsequently used by client applications to specify the
server applet.

2.1.5 Obtaining a SIO

A client applet must obtain this SIO in order to ac-
cess object O. The process of a client obtaining an SIO
is shown in Figure 2, step 2.

In order for client applet B to access object O, applet
B must create an object reference BO of type X, and
then call a system method getAppletShareableInter-
faceObject with the AID of the server, and an optional
byte which selects which interface is desired (for those
servers with more than one interface available). The
JCRE looks up the server applet associated with that
AID, and forwards the request to the server, replacing
the first argument with the client AID. Server applet A
receives the request and the AID of the requester (applet
B), and determines whether or not it will share object O
with applet B. If applet A finds the request agreeable,
then a reference to O is provided; otherwise, null is re-
turned. The JCRE forwards this reference to Applet B.
Applet B receives this reference (which is of type SIO),
casts it to type X, and stores it in BO.

2.1.6 Using a SIO

Once a SIO has been obtained, applet B can invoke
any methods from interface X on object reference BO,
which then accesses object O. However, this is not as
straightforward as it might seem, due to the firewalls.

 Figure 2, step 3 shows the client applet B on the left,
and the server applet A on the right, with a firewall in
between. Note that the only part of applet A that is visi-
ble through the firewall is object O. When applet B in-
vokes a method on BO, a context switch is triggered in
the JCRE, leading to the situation in Figure 3. At this
point, applet B is not visible at all; the only data visible
from B are the arguments passed on the stack (and the
global APDU array).

Note than it is pointless to pass object references on
the stack, since the firewall will prevent object O (in Ap-
plet A) from using them, due to the context switch.

However, object O can access any allowed data in Ap-
plet A as shown in Figure 3.

Figure 3: Server has no access to client data

2.2 Object Sharing Issues

There are four issues of concern with object sharing
in Java Card 2.1.

2.2.1 Access To All Interface Methods Of A Class

The JCRE protection mechanisms do not prevent in-
terfaces from being maliciously cast into other kinds of
interfaces that might exist for a given object.

Once granted any interface, it is possible to access
all of the shareable interface methods of an object via an
explicit cast (not just the interface granted to a particular
client). So if my server applet has two interfaces, intend-
ed for different kinds of clients, a client who legitimate-
ly obtains one interface, could cast it into the other inter-
face, and gain access to unintended methods.

For example, suppose an applet ABCLoyaltyApplet
has two different services that it intends to offer exclu-
sively to two different clients, i.e. grantFequentFlyer-
Points for client Airline, and grantLoyaltyPoints for cli-
ent Purse. Both of these services are accessible to re-
spective clients via different published interfaces, but
both are defined in the Applet class, as illustrated in
Code 1.
package AppABC;
import javacard.framework.*;

public interface ABCLoyaltyAirlineInterface extends Shareable {
public void grantFrequentFlyerPoints(int amount);

}

public interface ABCLoyaltyPurseInterface extends Shareable {
public void grantLoyaltyPoints(int amount);

}

public class ABCLoyaltyApplet extends
javacard.framework.Applet implements
ABCLoyaltyAirlineInterface, ABCLoyaltyPurseInterface {

protected int loyaltyPoints;
protected int frequentFlyerPoints;

/* A service only for client 'Airline' */
public void grantFrequentFlyerPoints(int amount) {

frequentFlyerPoints += amount;
}

/* A service only for client 'Purse' */
public void grantLoyaltyPoints(int amount) {

loyaltyPoints += amount;
}

public ABCLoyaltyApplet() throws Exception {

Server
Applet

Client
Applet

AB

O

loyaltyPoints = 0;
frequentFlyerPoints = 0;
/* Add code to initialize potential client AIDs ... */
register();

}

public void process() {
/* Various code specific to services for this applet,
such as point redemption code ... */

}

public Shareable getShareableInterfaceObject(
AID clientAID, byte parameter) {

if (clientAID.equals(purseAppletAID))
return (ABCLoyaltyPurseInterface) this;

else if (clientAID.equals(airlineAppletAID))
return (ABCLoyaltyAirlineInterface) this;

else
return null;

}
}

Code 1: Server defines and grants access to SIO

If the Purse client was aware of the Airline client in-
terface, it could make use of the interface it had been
granted by the server applet to grant loyalty points, and
instead use the grantFrequentFlyerPoints interface (in-
tended for client Airline) to maliciously add unwarrant-
ed frequent flier points, as shown in Code 2.
package AppPurse;

import javacard.framework.*;
import AppABC.*;

public class PurseApplet extends javacard.framework.Applet {

private int value;
private ABCLoyaltyPurseInterface abcSIO;

public PurseApplet() throws Exception {
value = 0;
abcSIO = (ABCLoyaltyPurseInterface)

JCSystem.getAppletSharableInterfaceObject(
abcLoyaltyAppletAID, (byte)0);

register();
}

public void use(int amount) {
value -= amount;
if (abcSIO != null)

abcSIO.grantLoyaltyPoints(amount);

/* Attempt to 'hack' by using an SIO to access the Airline
* applet's exclusive service grantFrequentFlyerPoints */
ABCLoyaltyAirlineInterface hackSIO =

(ABCLoyaltyAirlineInterface)
JCSystem.getAppletSharableInterfaceObject(
ABCLoyaltyAppletAID, (byte)0);

if (hackSIO != null)
hackSIO.grantFrequentFlyerPoints(amount);

}
/* Other methods follow for adding points to the purse ... */

}

Code 2: Client compromises SIO

Unfortunately, the JCRE is unable to prevent such
access, since it does not violate the restriction of access
only via shareable interfaces.

This problem can be eliminated by using separate
delegate objects for each shared interface, and have the
delegate objects handle or redirect the calls to the in-
tended object. Another solution is to verify the AID of
the caller upon each attempt to access a method in the
server.

Furthermore, it is not possible to grant a client ac-
cess to only certain methods of an interface. If such

granularity is required, further delegates and interfaces
must be used to separate the particular methods that are
to be allowed for each applet. Alternatively, this granu-
larity can be provided by having each method individu-
ally check the client AID, to determine whether the cli-
ent should have access to that particular method.

2.2.2 AID Impersonation

The decision by a server applet to grant access to an
object must be based solely on the AID of the requesting
applet; no other information is available to the server ap-
plet. The intended use is clearly to allow certain inter-
faces to be granted only to particular client applets, as
denoted by their unique AIDs. However, it is possible to
maliciously set the AID of a rogue applet to be the same
as the AID of a client applet known to have access to a
particular interface. The rogue applet is then loaded in-
stead of the applet that legitimately owns the AID. Once
loaded, the rogue applet can request the desired inter-
face. The server applet, having only the AID for refer-
ence, will naturally grant this request, since the AID
matches the required AID for the interface. The rogue
applet can then freely use the interface for malicious
purposes.

This is a critical security problem. Current solutions
to this problem require restrictions on applet loading,
such as only allowing applets to be loaded that are
signed by trusted sources. However, this approach
greatly reduces the flexibility of Java Cards; for exam-
ple, this prevents users from loading Java Card pro-
grams of their own devising.

2.2.3 Future Reference To Shared Objects

Granting access by AID necessarily assumes that the
server applet that wishes to share the object has fore-
knowledge of all AIDs of all client applets that are to be
loaded which will share particular interfaces. This is a
difficult requirement for any kind of server. But what
about other client applets that are written afterwards
which legitimately need access to the shared object?
Such applets are excluded from access to the object,
since the server can only grant access based on the AID
list that the server had when it was loaded. This necessi-
tates rewriting and reissuing the server applet such that
the new AIDs are included, which may pose an insur-
mountable hurdle when the server applet is already
widely distributed.

2.2.4 Inability To Pass Object Parameters

The inability to pass object parameters between ap-
plets can make many tasks cumbersome. For example,
supposes as a client needs to pass an object when invok-

ing a method on a server applet so that the server can
manipulate and return the object, as in encrypting a
buffer. In this case, the object might contain a field spec-
ifying the method of encryption, a key array, and a data
array. But as stated earlier, the firewall prevents the
server applet from accessing this data, even if an object
reference from the client is provided.

One might envision a work around to this problem
where the server A gets a shared interface on an object
in client B in order to read the object data as shown in
Figure 4.

Figure 4: Server access blocked by firewall

However, this will fail, since any attempt by server
A to get the object data from client B will also be
blocked by the firewall. The server can only invoke
methods on the client object, but the client object has no
means for returning the object data, other than a single
field at a time. Thus the only current work around to this
problem is to use the global APDU buffer to pass data
as shown in Figure 5.

Figure 5: Data exchange via global APDU buffer

 This is awkward at best, since the data being passed
may not be of appropriate length or type to be readily
passed via this mechanism. Consequently, the client and
server might have to make multiple calls and consider-
able manipulations to pass the desired parameters, due
to the restrictions of the APDU buffer.

This problem could be addressed by changing the
firewall restrictions to permit access to shared objects
(including data), instead of just interfaces; however, this
could potentially create security holes. Applets must
coded carefully to avoid exposing methods and data that
are not intended to be shared. But if instead of actually
sharing the applet object, the applet used a delegate to
expose only the desired methods and data, the JCRE

specification could be altered to permit access to only
delegate methods and data, thus eliminating the object
parameter problem, with a minimum of security risk.

3 Delegate Approach To Object Sharing

Based on an analysis of these critical problems, an
approach to object sharing was devised which avoids
these drawbacks. In this approach, each server applet
that wishes to permit access to its methods or data cre-
ates a single delegate, which is registered with the sys-
tem based on the AID of the applet. The delegate ex-
poses only those methods and data that the applet wishes
to share. Access to the delegate is public; all methods in
the delegate can be accessed by any other applet!

Since access to the delegate is unrestricted, an applet
protects itself in two ways. First, the delegate is written
to only access the desired methods of the server applet;
other applet methods cannot be accessed. Second, the
methods of the delegate can perform any checks as
deemed necessary to check the validity of the access to
the delegate; if the checks are not passed, the delegate
can refuse to pass the request on to the applet.

3.1 Java Card 2.1 System Changes Required

This approach presumes the addition of two new
Java Card 2.1 system methods. A version of register is
needed which takes a delegate and AID as arguments. A
system method getDelegate returns the delegate associ-
ated with a particular AID. These methods replace the
JCSystem.getAppletShareableInterfaceObject and
Applet.getShareableInterfaceObject methods. Further-
more, the JCRE is altered to permit access to methods
and data of delegate objects (DOs) in other contexts
(just as it now permits access to methods of SIOs in dif-
ferent contexts).

For performance reasons, it would be worthwhile to
investigate whether it is necessary for the JCRE to re-
strict access to objects in other contexts at all, since
checking object context imposes a speed penalty. Tech-
niques such as the delegate method proposed, coupled
with classical Java language and runtime protec-
tions[11,5], could perhaps result in a better performing
system that still meets the security requirements.

3.2 Delegate Server Implementation

A server applet must be written containing the de-
sired methods. For this example, we show a loyalty
server applet in Code 3 from the ABC company that al-
lows granting, using, and reading loyalty points.

Server
Applet

Client
Applet

AB

Server
Applet

Client
Applet

global APDU Buffer

package AppABC;
import OSResources.*;

public class ABCLoyaltyApplet extends OSResources.Applet {
private String aid = "AppABC.ABCLoyaltyApplet";
private int loyalty;

public ABCLoyaltyApplet() {
loyalty = 0;
register(new ABCLoyaltyDelegate(this), aid);

}

void grantPoints(int amount) {
loyalty += amount;

}

boolean usePoints(int amount) {
if (loyalty >= amount) {

loyalty -= amount;
return true;

} else {
return false;

}
}

int readPoints() {
return loyalty;

}
}

Code 3: Server applet registering its delegate

Note that the only novel aspect of this applet is when
it creates and registers its delegate, as illustrated in Fig-
ure 6, step 1. Whenever a server applet wishes to allow
access to another applet, a delegate must be written
which exposes the desired methods. Such a delegate is
shown in Code 4.
package AppABC;
import OSResources.*;

public class ABCLoyaltyDelegate extends Delegate {

final static byte CHALLENGE_LENGTH = (byte) 64;
final static byte FAILURES_ALLOWED = (byte) 2;

private byte[] secret1 = { /* initializing code ...*/ };
private byte[] secret2 = { /* initializing code ...*/ };

private ABCLoyaltyApplet myApplet;
private ChallengePhrase cp;
private ChallengePhrase checkcp;
private byte grantTriesRemaining = FAILURES_ALLOWED;
private byte useTriesRemaining = FAILURES_ALLOWED;

protected ABCLoyaltyDelegate(ABCLoyaltyApplet a) {
myApplet = a;
cp = new ChallengePhrase(CHALLENGE_LENGTH);
checkcp = new ChallengePhrase(CHALLENGE_LENGTH);

}

public boolean grantPoints(int amount) {
// do some checking
if (myApplet != null) {

ABCLoyaltyInterface pD = (ABCLoyaltyInterface)
OSystem.getDelegate(

OSystem.getPreviousContextAID());
if (pD != null) {

/* Create new random challenge phrase */
checkcp.setPhrase(cp.randomize());
/* Get client response to phrase */
byte[] response = pD.loyaltyChallenge(cp);
byte[] r = checkcp.encrypt(secret1);
if (isEqual(response,r)) {

/* See if client gave the correct response */
grantTriesRemaining = FAILURES_ALLOWED;
myApplet.grantPoints(amount);
return true;

} else {
if(--grantTriesRemaining == 0) myApplet = null;
return false;

}
}

}
return false;

}

public boolean usePoints(int amount) {
/* Access to this method uses secret2, for different

clients, but is otherwise similiar to grantPoints ... */
}

public int readPoints() {
if (myApplet != null)

return myApplet.readPoints();
else

return 0;
}

}

Code 4: Server delegate

Server
Applet

Client
Applet

Server
Applet

register(Delegate,ServerAID)JCRE

Client
Applet

JCSystem.getDelegate(ServerAID,byte)

DO (or null) JCRE

Step 1: Server registers its delegate

Step 2: Client obtains access to server delegate from JCRE

Step 3: Client has ‘transparent’ access only to the server delegate

access to DO

1

2

methods and data

Figure 6: Creating and accessing a delegate

This delegate is registered with the AID of the server
applet at the time the applet is instantiated on the Java
Card. At this point, this delegate is publicly accessible
by any other applet. This particular delegate defines the
interface ABCLoyaltyInterface shown in Code 5, which
must be implemented by client applications. The rea-
sons for this interface are discussed in detail in Section
3.3.
package AppABC;
import OSResources.*;

public interface ABCLoyaltyInterface{
public byte[] loyaltyChallenge(ChallengePhrase cp);

}

Code 5: Server defines interface that each client
must provide to handle challenge/response

3.3 Delegate Security

A delegate controls which methods each client can
access. This delegate exposes three methods: grant-
Points, usePoints, and readPoints. The method read-
Points has no validation, and may be freely used by any
client.

But what about the methods that require proof that
the access is valid, such as grantPoints and usePoints?
These methods could just check the AID of the client.
This effectively mimics the object sharing of Java Card
2.1, which is subject to the risks of AID impersonation
and difficulty of adding future clients.

These problems can be avoided by using the classi-
cal solution of shared secrets. In this example, access to
grantPoints is controlled by secret1; only clients that can
authenticate knowledge of secret1 will have their re-
quest passed from the delegate to the server applet. Ac-
cess to usePoints is controlled by secret2, which allows
a potentially different set of clients to access this meth-
od.

There are many standard techniques for handling
shared secrets and other methods of authentication [3].
We are not proposing anything new here, other than the
application of these techniques to this problem, to avoid
the limitations and pitfalls of security based on AID.
The details of the application of the shared secret tech-
nique to Java Card is presented in detail for the benefit
of those who may not be familiar with such techniques,
or may be unclear how they can be implemented in a
Java card.

Proving knowledge of the secret could be a tricky
proposition. Passing the secret as an argument to the
server applet is a bad idea, since the secret could be in-
tercepted in a number of ways. (One simple way to get
the secret is to write a applet that impersonates the serv-
er applet, thus capturing the secret when it is passed as
an argument.) A superior approach is to use challenge/

response phrases, as illustrated by the server delegate in
Code 4. When access is requested, the server delegate
sends a random challenge phrase to a predefined method
in the client delegate. This challenge phrase is encrypted
using the secret by the client delegate, and returned to
the server delegate. The server delegate performs the
same encryption, and if the results match, access is
granted. Thus the secret is never revealed outside of ei-
ther applet.

3.4 Delegate Client Implementation

When a client applet wishes to use the server applet,
it calls getDelegate with the AID of the server applet,
and receives a delegate, which it casts to the proper del-
egate class associated with the server applet, as shown
in Figure 6, step 2. The client applet then invokes meth-
ods on the delegate as desired. Note that unlike SIO, the
JCRE hands out the delegate, and server applet is not in-
volved. The client in Code 6 was written assuming au-
thentication using challenge/response.
package AppPurse;

import OSResources.*;
import AppABC.*;

public class PurseApplet extends OSResources.Applet {

public String aid = "AppPurse.PurseApplet";
private byte[] secret1 = { /* initializing code ...*/ };
private int value;

public PurseApplet() {
value = 0;
register(new PurseDelegate(this), aid);

}

public byte[] loyaltyChallenge(ChallengePhrase cp) {
return cp.encrypt(secret1);

}

public void use(int amount) {
value -= amount;

ABCLoyaltyDelegate d =
(ABCLoyaltyDelegate)
OSystem.getDelegate("AppABC.ABCLoyaltyApplet");

if (d != null) {
d.grantPoints(amount);

}
}

/* Other methods follow for adding points to the purse ... */
}

Code 6: Client applet invoking server method

To handle the challenge/response, the client must
supply a delegate as shown in Code 7 that the server will
call to perform the necessary encryption with the chal-
lenge phrase. This client delegate must implement the
ABCLoyaltyInterface, as defined by the server applet.
The delegate may not actually perform the encryption,
but may instead pass the challenge/response request to
the client applet for processing. This allows the dele-
gate to avoid holding the shared secret, reducing the se-
curity risk.

package AppPurse;

import OSResources.*;
import AppABC.*;

public class PurseDelegate extends Delegate implements
ABCLoyaltyInterface{

private PurseApplet myApplet;

protected PurseDelegate(PurseApplet a) {
myApplet = a;

}

public byte[] loyaltyChallenge(ChallengePhrase cp) {
if (myApplet != null)

return(myApplet.loyaltyChallenge(cp));
else

return null;
}

}

Code 7: Client challenge/response delegate

3.5 Overview Of Client/Server Communication

At this point, it is presumed that the server has al-
ready registered with the JCRE, and that the client has
already obtained the server delegate, as shown in Figure
6, and the client is ready to use a service from the server.
The resulting client/server communication using a
shared secret is illustrated in Figure 7.

The client begins by requesting a service from the
server. This is done by invoking a method on the server
delegate object �. The method in the server delegate
determines what level of protection is required; in this
case, it determines that a shared secret must be validated
to use this method. It therefore requests the delegate for
the client from the JCRE �, which the JCRE provides
(if it exists) �. Assuming the client delegate was suc-
cessfully obtained, the server obtains a random chal-

lenge phrase, and sends it to the client delegate � using
the interface the server had predefined for this purpose.
The client delegate passes the challenge to the client ap-
plet (which contains the secret) �. The client applet en-
crypts the challenge phrase using the shared secret, and
returns the response phrase to the client delegate �.
The client delegate then passes the response phrase to
the server delegate �. The server delegate also en-
crypts the challenge phrase with the shared secret, and if
the results match, the secret is validated. The server del-
egate then forwards the service request to the server ap-
plet �, which processes the request, and returns a re-
sponse to the delegate 	, which is forwarded to the cli-
ent applet
.

If the nature of the server applet is such that the ser-
vices are likely to be reused by a given client in a single
session, then after validation of the shared secret, the
server would likely be designed to return a session key
(which permits access only during the current session,
which ends when power is cycled). The client could
then access that particular service through the delegate
by providing the session key, thus avoiding the over-
head of validating the shared secret for each access of a
delegate method. Although the session key is provided
by the client to the server in clear text form, there is no
real security risk, since the server randomizes the cur-
rently active session key each time power is cycled. So
even if the session key were intercepted by an applet im-
personating the server, it could not be used to breach se-
curity, due to the randomizing of the session keys.

JCRE

- challenge()

- service()

JCSystem.getDelegate(ClientAID,byte)

clientDelegate

requestService()

response[Service]

issueChallenge()

response[Challenge]
Server Delegate

Server Applet

Client Applet

Client Delegate

1

10

4

7

2

3

8
9

Figure 7: Challenge/Response validation of shared secret

requestService()
response[Service]

issueChallenge()

response[Challenge]
5 6

4 Conclusion

The proposed delegate method of object sharing im-
proves on the SIO approach. It protects each method as
desired, so that no client applet gains access to unintend-
ed methods of a server applet. It avoids AID imperson-
ation, since AIDs can be supplemented with shared se-
crets or other authentication mechanisms. It avoids fu-
ture reference problems, since access need not be linked
to any particular AID, but can simply be based on a
shared secret which can easily be added to future client
applications. Moreover, it requires only a minimal ad-
dition to the Java Card system. Since the delegate meth-
od allows each applet to determine the security policy
desired on a per method basis, this allows the maximum
flexibility for granularity of access by each individual
client.

5 References

[1] Arnold, K. and Gosling, J., The Java Program-
ming Language, Addison-Wesley, 1996.

[2] Guthery, Scott. B., Java Card: Internet Computing
On A Smart Card, IEEE Internet Computing, pp.
57-59, Jan/Feb 1997.

[3] Guthery, Scott B., and Jurgensen, Timothy M.,
Smart Card Developer’s Kit, Macmillian Techni-
cal Publishing, 1998.

[4] ISIO-7816, Information Technology - Identifica-
tion cards - integrated circuit cards with contacts.

[5] McGraw, Gary E. and Felten, Edward W., Java
Security: Hostile Applets, Holes, and Antidotes,
John Wiley and Sons, 1996.

[6] McManis, Chuck. My ENIGMatic Java Ring. Jav-
aWorld, 3(8), August 1998. http://www.java-
world.com/javaworld/jw-08-1998/jw-08-in-
depth.html

[7] Sun Microsystems Inc., Java Card 2.1 Virtual Ma-
chine Specification, //java.sun.com/products/jav-
acard/JCVMSpec.pdf

[8] Sun Microsystems Inc., Java Card 2.1 Runtime
Environment Specification, //java.sun.com/prod-
ucts/javacard/JCRESpec.pdf

[9] Sun Microsystems Inc., Java Card 2.1 Application
Programming Interfaces Specification, //ja-
va.sun.com/products/javacard/htmldoc/index.ht-
ml

[10] Sun Microsystems Inc., The Java Card 2.1 Plat-
form Specifications, ///java.sun.com/products/jav-
acard/

[11] Yellin, Frank., Low level security in Java, Fourth
International World Wide Web Conference, Bos-
ton, MA, December 1995. http://www.w3.org/
pub/Conferences/WWW4/Papers/197/40.html

Michael Montgomery
Austin Product Center

Schlumberger
Austin, TX 78726

mmontgomery@slb.com

Secure Object Sharing in Java Card

Ksheerabdhi Krishna
Austin Product Center

Schlumberger
Austin, TX 78726

kkrishna@slb.com
Abstract

Since the invention of the Java Card, the issue of code
and data sharing has been a topic of great interest. Early
Java Cards shared data via files secured with access
control lists. Java Card 2.1 specification introduced a
method of object sharing, allowing access to methods of
server applets using Shareable Interface Objects (SIO).
However, this SIO approach can be improved. It permits
access to all interfaces of the SIO, whereas some inter-
faces may be intended only for particular clients. AID
impersonation could be used to gain access to services
unless the card authenticates all applets. Access to a
SIO by future applets may be impossible. Passing object
data between applets is quite cumbersome.
An approach to object sharing based on delegates is de-
scribed, which provides needed improvements with min-
imal modifications to Java Card 2.1. Using the delegate
approach, only the desired methods of an applet are ex-
posed, and each method can be protected by any security
policy the applet wishes to implement. A shared secret
security policy is described, using challenge/response
phrases to avoid revealing the shared secret. Such a se-
curity policy does not require applet authentication to
avoid AID impersonation, and lends itself readily to ac-
cess by any future applets that may be written.

1 Introduction

Since the invention of the Java Card, the issue of
code and data sharing has been a topic of considerable
interest. The first Java Cards [2] shared data between
Java Card applets using a file system secured by access
control lists. These lists determined which identities
could access particular files, and what permission each
identity was granted with respect to each file. The iden-
tities were established using key files and PIN verifica-
tion. This solution was quite powerful for many com-
mon data sharing situations; however it did not lend it-
self well to situations requiring access to methods
belonging to another Java Card applet.

Figure 1: Basic Java Card Architecture

A typical Java Card architecture is shown in Figure
1. The card contains an operating system, Java Card Vir-
tual Machine [7], Java Card Runtime Environment
(JCRE), and the Java Card API in ROM. Applications
are Java packages programmed to the API, and are usu-
ally loaded into EEPROM. An application consists of
one or more applets; applets in different packages are
separated by a firewall to prevent access to applet data
across package boundaries. Applets are programmed
using a subset of Java, and have a specified set of entry
points that trigger various actions on the card [6].

In this paper, we will describe the object sharing
mechanism introduced in Java Card 2.1, examine the is-
sues associated with this mechanism, and propose alter-
natives that address these issues. We rely heavily on
code examples, key elements of which are inserted into
the paper at relevant points. Sometimes the code in the
paper is edited for brevity, and comments containing
“...” indicates the removal of code not pertinent to the
discussion. The complete Java source code for these ex-
amples can be found in http://www.cyberflex.slb.com/
usenixMK99.html. Note that when discussing the dele-
gate examples, this code uses a framework which is suit-
able for simulation on a workstation, and is not intended
for use on a Java card.

P

AD
AD

JCRE (Java Card JCVM

OS

Runtime Env.)

P

AD

P

AD
AD

Java Package

Applet Data

Firewall

+ JCAPI

2 Object Sharing In Java Card 2.1

The Java Card 2.1 specification [10] introduces a
means of sharing objects between Java Card applets. Al-
though somewhat more difficult to use than file sharing,
it does provide a means for accessing object methods,
rather than just data. This specification uses a unique ap-
plet identifier (AID) [4] as the basis for determining
which applets are granted access to objects created by
other applets.

2.1 Description Of Object Sharing Mechanism

The strict firewall enforcement of Java Card 2.1
completely prevents an applet from accessing data cor-
responding to another applet. However, a provision was
made for an applet to obtain an interface belonging to
another applet, and to invoke a method on this interface.
This forms the basis of the Java Card 2.1 object sharing
mechanism.

2.1.1 Restricting Method Access through a SIO

Normally in Java [1], it would be possible to access
public methods across packages. Therefore, one could
use public methods in other packages without a need for
a sharing mechanism.

But this poses a problem for Java card, because the
applet entry points are necessarily public, yet we must
restrict access to them to prevent applets from running
other applet methods without permission. So the JCRE

does not permit any method to be invoked in other ap-
plets, except through the SIO mechanism. This prevents
obvious hacks, such as casting an object reference to
gain access to all of the public object methods, bypass-
ing the restriction of the interface.

2.1.2 Applet Context

The object system in a Java Card is partitioned into
separate protected object spaces referred to as contexts.
All applets in a given package share the same context,
and are prohibited from accessing objects in a different
context due to firewalls which are enforced by the Java
Card Runtime Environment (JCRE) [8]. The JCRE is
able to access objects in any context, and global arrays
such as the APDU buffer (which are owned by the
JCRE) can be accessed by applets in any context.

2.1.3 Shareable Interface Objects (SIO)

Shareable interfaces are a new feature in the Java
Card 2.1 API [9] to enable applets to explicitly share ob-
jects by defining a set of shared interface methods. Such
shareable objects are called Shareable Interface Objects
(SIO). We can think of those applets which provide SIO
as server applets (since they will provide access to their
services via the SIO), and those applets which use the
SIO of another applet as client applets. Note that an ap-
plet may be a server to some applets, and yet a client of
other applets.

Server
Applet

Client
Applet

Server
Appletregister()JCRE

Server
Applet

Client
Applet

JCSystem.getAppletShareableInterfaceObject(ServerAID,byte) getShareableInterfaceObject(ClientAID,byte)

SIO (or null)SIO (or null) JCRE

Step 1: Server registers itself

Step 2: Client obtains access to server SIO through JCRE

Step 3: Client has ‘transparent’ access only to the server SIO

access only SIO methods

1 2

34

Figure 2: Creating and accessing a SIO

B A

2.1.4 Creating a SIO

In order to create a new SIO, a server applet A must
first define a shareable interface X, which extends the
interface javacard.framework.Shareable. Applet A then
defines a class C that implements the shareable interface
X, and creates an instance O of class C. Object O is now
a SIO. An instance of applet A with an AID is registered
with the JCRE, as shown in Figure 2, step 1; this AID is
subsequently used by client applications to specify the
server applet.

2.1.5 Obtaining a SIO

A client applet must obtain this SIO in order to ac-
cess object O. The process of a client obtaining an SIO
is shown in Figure 2, step 2.

In order for client applet B to access object O, applet
B must create an object reference BO of type X, and
then call a system method getAppletShareableInter-
faceObject with the AID of the server, and an optional
byte which selects which interface is desired (for those
servers with more than one interface available). The
JCRE looks up the server applet associated with that
AID, and forwards the request to the server, replacing
the first argument with the client AID. Server applet A
receives the request and the AID of the requester (applet
B), and determines whether or not it will share object O
with applet B. If applet A finds the request agreeable,
then a reference to O is provided; otherwise, null is re-
turned. The JCRE forwards this reference to Applet B.
Applet B receives this reference (which is of type SIO),
casts it to type X, and stores it in BO.

2.1.6 Using a SIO

Once a SIO has been obtained, applet B can invoke
any methods from interface X on object reference BO,
which then accesses object O. However, this is not as
straightforward as it might seem, due to the firewalls.

 Figure 2, step 3 shows the client applet B on the left,
and the server applet A on the right, with a firewall in
between. Note that the only part of applet A that is visi-
ble through the firewall is object O. When applet B in-
vokes a method on BO, a context switch is triggered in
the JCRE, leading to the situation in Figure 3. At this
point, applet B is not visible at all; the only data visible
from B are the arguments passed on the stack (and the
global APDU array).

Note than it is pointless to pass object references on
the stack, since the firewall will prevent object O (in Ap-
plet A) from using them, due to the context switch.

However, object O can access any allowed data in Ap-
plet A as shown in Figure 3.

Figure 3: Server has no access to client data

2.2 Object Sharing Issues

There are four issues of concern with object sharing
in Java Card 2.1.

2.2.1 Access To All Interface Methods Of A Class

The JCRE protection mechanisms do not prevent in-
terfaces from being maliciously cast into other kinds of
interfaces that might exist for a given object.

Once granted any interface, it is possible to access
all of the shareable interface methods of an object via an
explicit cast (not just the interface granted to a particular
client). So if my server applet has two interfaces, intend-
ed for different kinds of clients, a client who legitimate-
ly obtains one interface, could cast it into the other inter-
face, and gain access to unintended methods.

For example, suppose an applet ABCLoyaltyApplet
has two different services that it intends to offer exclu-
sively to two different clients, i.e. grantFequentFlyer-
Points for client Airline, and grantLoyaltyPoints for cli-
ent Purse. Both of these services are accessible to re-
spective clients via different published interfaces, but
both are defined in the Applet class, as illustrated in
Code 1.
package AppABC;
import javacard.framework.*;

public interface ABCLoyaltyAirlineInterface extends Shareable {
public void grantFrequentFlyerPoints(int amount);

}

public interface ABCLoyaltyPurseInterface extends Shareable {
public void grantLoyaltyPoints(int amount);

}

public class ABCLoyaltyApplet extends
javacard.framework.Applet implements
ABCLoyaltyAirlineInterface, ABCLoyaltyPurseInterface {

protected int loyaltyPoints;
protected int frequentFlyerPoints;

/* A service only for client 'Airline' */
public void grantFrequentFlyerPoints(int amount) {

frequentFlyerPoints += amount;
}

/* A service only for client 'Purse' */
public void grantLoyaltyPoints(int amount) {

loyaltyPoints += amount;
}

public ABCLoyaltyApplet() throws Exception {

Server
Applet

Client
Applet

AB

O

loyaltyPoints = 0;
frequentFlyerPoints = 0;
/* Add code to initialize potential client AIDs ... */
register();

}

public void process() {
/* Various code specific to services for this applet,
such as point redemption code ... */

}

public Shareable getShareableInterfaceObject(
AID clientAID, byte parameter) {

if (clientAID.equals(purseAppletAID))
return (ABCLoyaltyPurseInterface) this;

else if (clientAID.equals(airlineAppletAID))
return (ABCLoyaltyAirlineInterface) this;

else
return null;

}
}

Code 1: Server defines and grants access to SIO

If the Purse client was aware of the Airline client in-
terface, it could make use of the interface it had been
granted by the server applet to grant loyalty points, and
instead use the grantFrequentFlyerPoints interface (in-
tended for client Airline) to maliciously add unwarrant-
ed frequent flier points, as shown in Code 2.
package AppPurse;

import javacard.framework.*;
import AppABC.*;

public class PurseApplet extends javacard.framework.Applet {

private int value;
private ABCLoyaltyPurseInterface abcSIO;

public PurseApplet() throws Exception {
value = 0;
abcSIO = (ABCLoyaltyPurseInterface)

JCSystem.getAppletSharableInterfaceObject(
abcLoyaltyAppletAID, (byte)0);

register();
}

public void use(int amount) {
value -= amount;
if (abcSIO != null)

abcSIO.grantLoyaltyPoints(amount);

/* Attempt to 'hack' by using an SIO to access the Airline
* applet's exclusive service grantFrequentFlyerPoints */
ABCLoyaltyAirlineInterface hackSIO =

(ABCLoyaltyAirlineInterface)
JCSystem.getAppletSharableInterfaceObject(
ABCLoyaltyAppletAID, (byte)0);

if (hackSIO != null)
hackSIO.grantFrequentFlyerPoints(amount);

}
/* Other methods follow for adding points to the purse ... */

}

Code 2: Client compromises SIO

Unfortunately, the JCRE is unable to prevent such
access, since it does not violate the restriction of access
only via shareable interfaces.

This problem can be eliminated by using separate
delegate objects for each shared interface, and have the
delegate objects handle or redirect the calls to the in-
tended object. Another solution is to verify the AID of
the caller upon each attempt to access a method in the
server.

Furthermore, it is not possible to grant a client ac-
cess to only certain methods of an interface. If such

granularity is required, further delegates and interfaces
must be used to separate the particular methods that are
to be allowed for each applet. Alternatively, this granu-
larity can be provided by having each method individu-
ally check the client AID, to determine whether the cli-
ent should have access to that particular method.

2.2.2 AID Impersonation

The decision by a server applet to grant access to an
object must be based solely on the AID of the requesting
applet; no other information is available to the server ap-
plet. The intended use is clearly to allow certain inter-
faces to be granted only to particular client applets, as
denoted by their unique AIDs. However, it is possible to
maliciously set the AID of a rogue applet to be the same
as the AID of a client applet known to have access to a
particular interface. The rogue applet is then loaded in-
stead of the applet that legitimately owns the AID. Once
loaded, the rogue applet can request the desired inter-
face. The server applet, having only the AID for refer-
ence, will naturally grant this request, since the AID
matches the required AID for the interface. The rogue
applet can then freely use the interface for malicious
purposes.

This is a critical security problem. Current solutions
to this problem require restrictions on applet loading,
such as only allowing applets to be loaded that are
signed by trusted sources. However, this approach
greatly reduces the flexibility of Java Cards; for exam-
ple, this prevents users from loading Java Card pro-
grams of their own devising.

2.2.3 Future Reference To Shared Objects

Granting access by AID necessarily assumes that the
server applet that wishes to share the object has fore-
knowledge of all AIDs of all client applets that are to be
loaded which will share particular interfaces. This is a
difficult requirement for any kind of server. But what
about other client applets that are written afterwards
which legitimately need access to the shared object?
Such applets are excluded from access to the object,
since the server can only grant access based on the AID
list that the server had when it was loaded. This necessi-
tates rewriting and reissuing the server applet such that
the new AIDs are included, which may pose an insur-
mountable hurdle when the server applet is already
widely distributed.

2.2.4 Inability To Pass Object Parameters

The inability to pass object parameters between ap-
plets can make many tasks cumbersome. For example,
supposes as a client needs to pass an object when invok-

ing a method on a server applet so that the server can
manipulate and return the object, as in encrypting a
buffer. In this case, the object might contain a field spec-
ifying the method of encryption, a key array, and a data
array. But as stated earlier, the firewall prevents the
server applet from accessing this data, even if an object
reference from the client is provided.

One might envision a work around to this problem
where the server A gets a shared interface on an object
in client B in order to read the object data as shown in
Figure 4.

Figure 4: Server access blocked by firewall

However, this will fail, since any attempt by server
A to get the object data from client B will also be
blocked by the firewall. The server can only invoke
methods on the client object, but the client object has no
means for returning the object data, other than a single
field at a time. Thus the only current work around to this
problem is to use the global APDU buffer to pass data
as shown in Figure 5.

Figure 5: Data exchange via global APDU buffer

 This is awkward at best, since the data being passed
may not be of appropriate length or type to be readily
passed via this mechanism. Consequently, the client and
server might have to make multiple calls and consider-
able manipulations to pass the desired parameters, due
to the restrictions of the APDU buffer.

This problem could be addressed by changing the
firewall restrictions to permit access to shared objects
(including data), instead of just interfaces; however, this
could potentially create security holes. Applets must
coded carefully to avoid exposing methods and data that
are not intended to be shared. But if instead of actually
sharing the applet object, the applet used a delegate to
expose only the desired methods and data, the JCRE

specification could be altered to permit access to only
delegate methods and data, thus eliminating the object
parameter problem, with a minimum of security risk.

3 Delegate Approach To Object Sharing

Based on an analysis of these critical problems, an
approach to object sharing was devised which avoids
these drawbacks. In this approach, each server applet
that wishes to permit access to its methods or data cre-
ates a single delegate, which is registered with the sys-
tem based on the AID of the applet. The delegate ex-
poses only those methods and data that the applet wishes
to share. Access to the delegate is public; all methods in
the delegate can be accessed by any other applet!

Since access to the delegate is unrestricted, an applet
protects itself in two ways. First, the delegate is written
to only access the desired methods of the server applet;
other applet methods cannot be accessed. Second, the
methods of the delegate can perform any checks as
deemed necessary to check the validity of the access to
the delegate; if the checks are not passed, the delegate
can refuse to pass the request on to the applet.

3.1 Java Card 2.1 System Changes Required

This approach presumes the addition of two new
Java Card 2.1 system methods. A version of register is
needed which takes a delegate and AID as arguments. A
system method getDelegate returns the delegate associ-
ated with a particular AID. These methods replace the
JCSystem.getAppletShareableInterfaceObject and
Applet.getShareableInterfaceObject methods. Further-
more, the JCRE is altered to permit access to methods
and data of delegate objects (DOs) in other contexts
(just as it now permits access to methods of SIOs in dif-
ferent contexts).

For performance reasons, it would be worthwhile to
investigate whether it is necessary for the JCRE to re-
strict access to objects in other contexts at all, since
checking object context imposes a speed penalty. Tech-
niques such as the delegate method proposed, coupled
with classical Java language and runtime protec-
tions[11,5], could perhaps result in a better performing
system that still meets the security requirements.

3.2 Delegate Server Implementation

A server applet must be written containing the de-
sired methods. For this example, we show a loyalty
server applet in Code 3 from the ABC company that al-
lows granting, using, and reading loyalty points.

Server
Applet

Client
Applet

AB

Server
Applet

Client
Applet

global APDU Buffer

package AppABC;
import OSResources.*;

public class ABCLoyaltyApplet extends OSResources.Applet {
private String aid = "AppABC.ABCLoyaltyApplet";
private int loyalty;

public ABCLoyaltyApplet() {
loyalty = 0;
register(new ABCLoyaltyDelegate(this), aid);

}

void grantPoints(int amount) {
loyalty += amount;

}

boolean usePoints(int amount) {
if (loyalty >= amount) {

loyalty -= amount;
return true;

} else {
return false;

}
}

int readPoints() {
return loyalty;

}
}

Code 3: Server applet registering its delegate

Note that the only novel aspect of this applet is when
it creates and registers its delegate, as illustrated in Fig-
ure 6, step 1. Whenever a server applet wishes to allow
access to another applet, a delegate must be written
which exposes the desired methods. Such a delegate is
shown in Code 4.
package AppABC;
import OSResources.*;

public class ABCLoyaltyDelegate extends Delegate {

final static byte CHALLENGE_LENGTH = (byte) 64;
final static byte FAILURES_ALLOWED = (byte) 2;

private byte[] secret1 = { /* initializing code ...*/ };
private byte[] secret2 = { /* initializing code ...*/ };

private ABCLoyaltyApplet myApplet;
private ChallengePhrase cp;
private ChallengePhrase checkcp;
private byte grantTriesRemaining = FAILURES_ALLOWED;
private byte useTriesRemaining = FAILURES_ALLOWED;

protected ABCLoyaltyDelegate(ABCLoyaltyApplet a) {
myApplet = a;
cp = new ChallengePhrase(CHALLENGE_LENGTH);
checkcp = new ChallengePhrase(CHALLENGE_LENGTH);

}

public boolean grantPoints(int amount) {
// do some checking
if (myApplet != null) {

ABCLoyaltyInterface pD = (ABCLoyaltyInterface)
OSystem.getDelegate(

OSystem.getPreviousContextAID());
if (pD != null) {

/* Create new random challenge phrase */
checkcp.setPhrase(cp.randomize());
/* Get client response to phrase */
byte[] response = pD.loyaltyChallenge(cp);
byte[] r = checkcp.encrypt(secret1);
if (isEqual(response,r)) {

/* See if client gave the correct response */
grantTriesRemaining = FAILURES_ALLOWED;
myApplet.grantPoints(amount);
return true;

} else {
if(--grantTriesRemaining == 0) myApplet = null;
return false;

}
}

}
return false;

}

public boolean usePoints(int amount) {
/* Access to this method uses secret2, for different

clients, but is otherwise similiar to grantPoints ... */
}

public int readPoints() {
if (myApplet != null)

return myApplet.readPoints();
else

return 0;
}

}

Code 4: Server delegate

Server
Applet

Client
Applet

Server
Applet

register(Delegate,ServerAID)JCRE

Client
Applet

JCSystem.getDelegate(ServerAID,byte)

DO (or null) JCRE

Step 1: Server registers its delegate

Step 2: Client obtains access to server delegate from JCRE

Step 3: Client has ‘transparent’ access only to the server delegate

access to DO

1

2

methods and data

Figure 6: Creating and accessing a delegate

This delegate is registered with the AID of the server
applet at the time the applet is instantiated on the Java
Card. At this point, this delegate is publicly accessible
by any other applet. This particular delegate defines the
interface ABCLoyaltyInterface shown in Code 5, which
must be implemented by client applications. The rea-
sons for this interface are discussed in detail in Section
3.3.
package AppABC;
import OSResources.*;

public interface ABCLoyaltyInterface{
public byte[] loyaltyChallenge(ChallengePhrase cp);

}

Code 5: Server defines interface that each client
must provide to handle challenge/response

3.3 Delegate Security

A delegate controls which methods each client can
access. This delegate exposes three methods: grant-
Points, usePoints, and readPoints. The method read-
Points has no validation, and may be freely used by any
client.

But what about the methods that require proof that
the access is valid, such as grantPoints and usePoints?
These methods could just check the AID of the client.
This effectively mimics the object sharing of Java Card
2.1, which is subject to the risks of AID impersonation
and difficulty of adding future clients.

These problems can be avoided by using the classi-
cal solution of shared secrets. In this example, access to
grantPoints is controlled by secret1; only clients that can
authenticate knowledge of secret1 will have their re-
quest passed from the delegate to the server applet. Ac-
cess to usePoints is controlled by secret2, which allows
a potentially different set of clients to access this meth-
od.

There are many standard techniques for handling
shared secrets and other methods of authentication [3].
We are not proposing anything new here, other than the
application of these techniques to this problem, to avoid
the limitations and pitfalls of security based on AID.
The details of the application of the shared secret tech-
nique to Java Card is presented in detail for the benefit
of those who may not be familiar with such techniques,
or may be unclear how they can be implemented in a
Java card.

Proving knowledge of the secret could be a tricky
proposition. Passing the secret as an argument to the
server applet is a bad idea, since the secret could be in-
tercepted in a number of ways. (One simple way to get
the secret is to write a applet that impersonates the serv-
er applet, thus capturing the secret when it is passed as
an argument.) A superior approach is to use challenge/

response phrases, as illustrated by the server delegate in
Code 4. When access is requested, the server delegate
sends a random challenge phrase to a predefined method
in the client delegate. This challenge phrase is encrypted
using the secret by the client delegate, and returned to
the server delegate. The server delegate performs the
same encryption, and if the results match, access is
granted. Thus the secret is never revealed outside of ei-
ther applet.

3.4 Delegate Client Implementation

When a client applet wishes to use the server applet,
it calls getDelegate with the AID of the server applet,
and receives a delegate, which it casts to the proper del-
egate class associated with the server applet, as shown
in Figure 6, step 2. The client applet then invokes meth-
ods on the delegate as desired. Note that unlike SIO, the
JCRE hands out the delegate, and server applet is not in-
volved. The client in Code 6 was written assuming au-
thentication using challenge/response.
package AppPurse;

import OSResources.*;
import AppABC.*;

public class PurseApplet extends OSResources.Applet {

public String aid = "AppPurse.PurseApplet";
private byte[] secret1 = { /* initializing code ...*/ };
private int value;

public PurseApplet() {
value = 0;
register(new PurseDelegate(this), aid);

}

public byte[] loyaltyChallenge(ChallengePhrase cp) {
return cp.encrypt(secret1);

}

public void use(int amount) {
value -= amount;

ABCLoyaltyDelegate d =
(ABCLoyaltyDelegate)
OSystem.getDelegate("AppABC.ABCLoyaltyApplet");

if (d != null) {
d.grantPoints(amount);

}
}

/* Other methods follow for adding points to the purse ... */
}

Code 6: Client applet invoking server method

To handle the challenge/response, the client must
supply a delegate as shown in Code 7 that the server will
call to perform the necessary encryption with the chal-
lenge phrase. This client delegate must implement the
ABCLoyaltyInterface, as defined by the server applet.
The delegate may not actually perform the encryption,
but may instead pass the challenge/response request to
the client applet for processing. This allows the dele-
gate to avoid holding the shared secret, reducing the se-
curity risk.

package AppPurse;

import OSResources.*;
import AppABC.*;

public class PurseDelegate extends Delegate implements
ABCLoyaltyInterface{

private PurseApplet myApplet;

protected PurseDelegate(PurseApplet a) {
myApplet = a;

}

public byte[] loyaltyChallenge(ChallengePhrase cp) {
if (myApplet != null)

return(myApplet.loyaltyChallenge(cp));
else

return null;
}

}

Code 7: Client challenge/response delegate

3.5 Overview Of Client/Server Communication

At this point, it is presumed that the server has al-
ready registered with the JCRE, and that the client has
already obtained the server delegate, as shown in Figure
6, and the client is ready to use a service from the server.
The resulting client/server communication using a
shared secret is illustrated in Figure 7.

The client begins by requesting a service from the
server. This is done by invoking a method on the server
delegate object �. The method in the server delegate
determines what level of protection is required; in this
case, it determines that a shared secret must be validated
to use this method. It therefore requests the delegate for
the client from the JCRE �, which the JCRE provides
(if it exists) �. Assuming the client delegate was suc-
cessfully obtained, the server obtains a random chal-

lenge phrase, and sends it to the client delegate � using
the interface the server had predefined for this purpose.
The client delegate passes the challenge to the client ap-
plet (which contains the secret) �. The client applet en-
crypts the challenge phrase using the shared secret, and
returns the response phrase to the client delegate �.
The client delegate then passes the response phrase to
the server delegate �. The server delegate also en-
crypts the challenge phrase with the shared secret, and if
the results match, the secret is validated. The server del-
egate then forwards the service request to the server ap-
plet �, which processes the request, and returns a re-
sponse to the delegate 	, which is forwarded to the cli-
ent applet
.

If the nature of the server applet is such that the ser-
vices are likely to be reused by a given client in a single
session, then after validation of the shared secret, the
server would likely be designed to return a session key
(which permits access only during the current session,
which ends when power is cycled). The client could
then access that particular service through the delegate
by providing the session key, thus avoiding the over-
head of validating the shared secret for each access of a
delegate method. Although the session key is provided
by the client to the server in clear text form, there is no
real security risk, since the server randomizes the cur-
rently active session key each time power is cycled. So
even if the session key were intercepted by an applet im-
personating the server, it could not be used to breach se-
curity, due to the randomizing of the session keys.

JCRE

- challenge()

- service()

JCSystem.getDelegate(ClientAID,byte)

clientDelegate

requestService()

response[Service]

issueChallenge()

response[Challenge]
Server Delegate

Server Applet

Client Applet

Client Delegate

1

10

4

7

2

3

8
9

Figure 7: Challenge/Response validation of shared secret

requestService()
response[Service]

issueChallenge()

response[Challenge]
5 6

4 Conclusion

The proposed delegate method of object sharing im-
proves on the SIO approach. It protects each method as
desired, so that no client applet gains access to unintend-
ed methods of a server applet. It avoids AID imperson-
ation, since AIDs can be supplemented with shared se-
crets or other authentication mechanisms. It avoids fu-
ture reference problems, since access need not be linked
to any particular AID, but can simply be based on a
shared secret which can easily be added to future client
applications. Moreover, it requires only a minimal ad-
dition to the Java Card system. Since the delegate meth-
od allows each applet to determine the security policy
desired on a per method basis, this allows the maximum
flexibility for granularity of access by each individual
client.

5 References

[1] Arnold, K. and Gosling, J., The Java Program-
ming Language, Addison-Wesley, 1996.

[2] Guthery, Scott. B., Java Card: Internet Computing
On A Smart Card, IEEE Internet Computing, pp.
57-59, Jan/Feb 1997.

[3] Guthery, Scott B., and Jurgensen, Timothy M.,
Smart Card Developer’s Kit, Macmillian Techni-
cal Publishing, 1998.

[4] ISIO-7816, Information Technology - Identifica-
tion cards - integrated circuit cards with contacts.

[5] McGraw, Gary E. and Felten, Edward W., Java
Security: Hostile Applets, Holes, and Antidotes,
John Wiley and Sons, 1996.

[6] McManis, Chuck. My ENIGMatic Java Ring. Jav-
aWorld, 3(8), August 1998. http://www.java-
world.com/javaworld/jw-08-1998/jw-08-in-
depth.html

[7] Sun Microsystems Inc., Java Card 2.1 Virtual Ma-
chine Specification, //java.sun.com/products/jav-
acard/JCVMSpec.pdf

[8] Sun Microsystems Inc., Java Card 2.1 Runtime
Environment Specification, //java.sun.com/prod-
ucts/javacard/JCRESpec.pdf

[9] Sun Microsystems Inc., Java Card 2.1 Application
Programming Interfaces Specification, //ja-
va.sun.com/products/javacard/htmldoc/index.ht-
ml

[10] Sun Microsystems Inc., The Java Card 2.1 Plat-
form Specifications, ///java.sun.com/products/jav-
acard/

[11] Yellin, Frank., Low level security in Java, Fourth
International World Wide Web Conference, Bos-
ton, MA, December 1995. http://www.w3.org/
pub/Conferences/WWW4/Papers/197/40.html

	1 Introduction
	2 Object Sharing In Java Card 2.1
	2.1 Description Of Object Sharing Mechanism
	2.1.1 Restricting Method Access through a SIO
	2.1.2 Applet Context
	2.1.3 Shareable Interface Objects (SIO)
	2.1.4 Creating a SIO
	2.1.5 Obtaining a SIO
	2.1.6 Using a SIO

	2.2 Object Sharing Issues
	2.2.1 Access To All Interface Methods Of A Class
	2.2.2 AID Impersonation
	2.2.3 Future Reference To Shared Objects
	2.2.4 Inability To Pass Object Parameters

	3 Delegate Approach To Object Sharing
	3.1 Java Card 2.1 System Changes Required
	3.2 Delegate Server Implementation
	3.3 Delegate Security
	3.4 Delegate Client Implementation
	3.5 Overview Of Client/Server Communication

	4 Conclusion
	5 References
	Secure Object Sharing in Java Card
	1 Introduction
	2 Object Sharing In Java Card 2.1
	2.1 Description Of Object Sharing Mechanism
	2.1.1 Restricting Method Access through a SIO
	2.1.2 Applet Context
	2.1.3 Shareable Interface Objects (SIO)
	2.1.4 Creating a SIO
	2.1.5 Obtaining a SIO
	2.1.6 Using a SIO

	2.2 Object Sharing Issues
	2.2.1 Access To All Interface Methods Of A Class
	2.2.2 AID Impersonation
	2.2.3 Future Reference To Shared Objects
	2.2.4 Inability To Pass Object Parameters

	3 Delegate Approach To Object Sharing
	3.1 Java Card 2.1 System Changes Required
	3.2 Delegate Server Implementation
	3.3 Delegate Security
	3.4 Delegate Client Implementation
	3.5 Overview Of Client/Server Communication

	4 Conclusion
	5 References
	Secure Object Sharing in Java Card

